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Abstract. A theory of elastic sirain relaxation is developed for termary semiconductor
alloys Aj—xB,.C with bond length mismatch. The theory is applied to the problem of
local structure in Znj ~;Mn;Se using two models that separately consider random and
ordered calion-site occupation. Comparison of results from the models with experimental
data for the local structure suggests thal the alloy is random and that both anion and
cation sublattices retax.

1. Introduction

The structural properties of semiconductor alloys and compounds are fundamental
to a general understanding of such systems and to a description of more practical
aspects such as electronic or vibrational properties. The structure of a multinary
alloy or compound has two components, the long-range order, or Bravais lattice, and
the Jocal arrangement of atoms in the unit cell. The Bravais lattice determines the
symmetry of the crystal and the shape of the Brillouin zone, while the local structure
involves short-range properties such as the near-neighbour coordination and bonding.
The importance of details in the locai structure has long been recognized in certain
classes of semiconductor compounds, notably the chalcopyrites [1]. More recently, the
study of local structure has been extended to more common semiconductor systems
such as ternary HI-V and 1I-VI alloys of the type A,__B_C. On first examination,
the structural properties of these alloys appear simply related to those of the parent
binary compounds AC and BC. The long-range crystalline order observed is on aver-
age identical to that of the parent compounds, either cubic-symmetry zinc blende or
hexagonal-symmetry wurtzite. The lattice constants of these alloys are generally found
to follow Vegard's law—a linear variation berween the parent compound values. The
loca) structure suggested by this would be a simple interpolation of the perfect crystal
arrangements of the binary compounds, which is the well known virtual-crystal approx-
imation (vCa). However, recent experiments using EXAFS (extended x-ray absorption
fine structure) [2-4] clearly show that atoms deviate locally from perfect crystal po-
sitions, with first- and second-neighbour distances approaching their separate binary
values rather than following the linear variation of the lattice constant. These local
distortions within the long-range crystal lactice are due to the relaxation of internal
microscopic strain resulting from atomic size mismatch of the alloy constituents.
The purpose of this paper is to present a theoretical study of the origin of local
structure observed in recent EXAFS experiments on diluted magnetic semiconductors.
Measurements performed on the common-anion alloy Zn,__Mn_Se [4] show that
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the near-neighbour (NN) Zn-Se and Mn-Se bond lengths and next-nearest-neighbour
{NNN) Se-Zn-Se and Se-Mn-Se anion-anion distances remain nearly constant as a
function of composition z, even through the zinc blende to wurtzite phase transition
(figures 1{z) and 1(b)). The NNN cation—cation distances split into three distinct
groups: long Mn-Se-Mn, intermediate Mn-Se-Zn, and short Zn-Se-Zn (figure 1(c)).
This splitting is a prominent feature of the II-VI system not seen in III-V alloys.
X-ray diffraction measurements show that the lattice constant of the alloy closely
follows Vegard's law [5]. Clearly both the anion and cation sublattices experience
sighificant short-range distortions, which a theoretical description should include.

The theoretical approach taken here combines a simple formalism for the
microscopic strain of the alloy with two models of local structure. The relaxation
of the cation sublattice is dependent on the NNN environment (NNs being identical
anions) and thus it is important to consider different possible cation distributions.
The first model uses a set of perfectly ordered structures with extended unit cells as
the basis for local atomic arrangements. The second considers a basis of local clus-
ters in an averaged random environment. Predictions of the two models are directly
comparcd with experimental results t clarify oends.
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2. The strain energy

The first step in building the theory is to choose a form for the internal elastic
strain-energy of the system. The model used here is one of discrete microscopic
strain based on the sp® bonds common to semiconductors of interest in this work.
Such a method permits a simple physical interpretation of forces and parameters
and eliminates the need to develop a continuum or effective medium model. We
follow Keating {6] and Harrison [7] in resolving interatomic forces into a valence
force field. We consider an approximation uvsing only first-neighbour bond-stretching
forces and second-neighbour bond-bending forces. The radial force constant C, and
angular constant C, are empirical parameters obtained from the macroscopic elastic
constants of the solid. Values used for ZnSe and MnSe appear in tabie 1. The
strain-energy is written as a sum over distorted bonds and angles:

d;; ~d } "
Estra.in = Z% ;0 (_J’d;__?_)[! + Z %Cl(aeijk)“' (1)

ij ijk

Here d;; is the distorted bond length, d, is the natural bond length (table 1) and 68,;,
is the deviation of the angle from perfect tetrahedral. The radial sum is over each
first-neighbour pair and the angular sum is over all unique anion- and cation-centred
angles. The advantage of the valence force field is that it allows explicit use of Jocal
atomic configurations. Atoms become sites in a classical elastic network. The atoms
are allowed to relax to positions determined by minimizing the total strain-energy. In
this work, atomic displacements are assumed to be small and are weated with a linear
first-order approximation. The final strain-energy, bond lengths and other structural
information are obtained from the relaxed configuration of the network.

Table 1. Valence force-field constanis Cy and C (in €V) and naturail bond lengths do
(in dngstroms) used in the theory for both zinc blende and wurtzite,

Compound do Cla (oh
ZnSe 2454 432 1.1
MnSe 2.556 38.0 0.4

The Zn, _,Mn_Se alloy presents two complications to the use of the valence
force field. Most importantly, binary MnSe does not crystallize in the zinc-blende or
wurzite structure n bulk form, but rather in the rock-salt structure. A tetrahedral
bond length obtained by extrapolating lattice-constant data from three A,__Mn,Se
alloys (with A = Zn, Cd, Hg) {5] is wed as the natural MnSe bond length for
both cubic and hexagonal symmetries. The macroscopic elastic constants for this
hypothetical tetrahedral MnSe are estimated from data for the elastic constants of
the Zn,__Mn_Se alloy [8]. We follow Martin [9] and assume that the reduced elastic
constants, (d* /e'-’)C',-J- (where d is the NN distance and ¢ is the electron charge) will
have a linear dependence on the bond ionicity. For the alloy this implies a linear
variation with the composition . An extrapolation based on a least-squares fit of
the alloy elastic constant data obtains values for MnSe constants with errors of a
few percent. The small uncertainties in the force constants arising from this are
no larger than typical errors in experimentally obtained efastic quantities and should
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have no noticeable effect on the general trends of interest here, The data for the
cubic phase of the alloy are not complete enough for extrapolation to a = 1.0, so
we only obtain hexagonal elastic constants. This brings in the second complication,
that is the alloy undergoes a structural phase transition from zinc-blende to wurtzite
at x ~ 0.3, and cannot be grown in bulk above x ~ 0.57. The force constants
for the hexagonal case are obtained by using Martins transfomations [10] to obtain
‘effective’ cubic elastic constants from the estimated hexagonal constants, and then
the microscopic force constants are fit as in Harrison [7]. A small correction due
to long-range Coulomb interactions i also included [9]. Since experimental values
for the cubic elastic constants of MnSe are not available, we follow Martin [10] in
assuming that the average tetrahedral forces in wurtzite and zinc blende are the same
and use the same microscopic force constants as in the hexagonal case. Similarly
for ZnSe, cubic and hexagonal force constants are obtained from the experimental
cubic elastic constants. If experimental data were available for the elastic constants of
MnSe and ZnSe for both zinc-blende and wurtzite structures, there would probably
be small differences in the microscopic force constants for the two symmetries. Again,
this should have little effect on the genera] trends predicted by the simple empirical
theory used here.

3. Ordered structures

The first model of local structure tests the possibility of incipient ordering in the alloy.
The crystal lattice is assumed 1 have a periodic structure with a unit cell larger than
that of the parent zinc blende or wurtzite, but still finite, Since the ordering occurs
on the cation sublattice, the underlying reference lattice is face-centred cubic (FCC)
or hexagonal close packed (HCP). The particular ordered structures considered are
the special-k point structures for a FCC or HCP lattice expected to be stable under
long-range composition fluctuations according to the Landau-Lifshitz theory of phase
transitions, for a review, see [11]. For the FCC case there are a total of five structures
occurring at compositions = = £,%,2 [12]. There are more structures in the lower-
symmetry HCP case, a wotal of fifteen at compositions & = 4,4,4,1,%,3,5 {13, 14].
Examples of cubic- and hexagonal-symmetry ordered structures appear in figures 2
and 3 [15].

The procedure for finding the minimum strain-energy configuration of the struc-
tures is identical to that in {12]. First, coordinates for the positions of the atoms in
the primitive cell of cach ordered structure are specified. In each case there is an
obvious symmetry-allowed distortion which best accommodates the bond-stretching
and bond-bending forces. For example, in the chalcopyrite structure, figure 2, the
positions of the eight basis atoms are described by just three parameters: the dimen-
sions « and 2c¢ of the body-centred tetragonal unit cell and an internal distortion
variable p [12]. These three parameters are related back to the dimension ¢, of
the underlying reference face-cenired cube, ¢ ~ ¢ =~ p ~ @, In the next step of
the calculation, all contributions to equation (I) from all atoms in the basis of the
ordered structure are tabulated (without double counting). Then the strain-energy is
minimized with respect to all free parameters, thus determining both the positions of
all atoms as well as the size of the strain-energy.

The EXAFs measurements for Zn,_ . Mn_Se were performed on samples prepared
by the high temperature Bridgman method and long-range crystalline order was not
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Figure 2 The unit cell of the zinc-blende-derived
ordered structure chalcopyrite, ABC;. Small circles
represent anions C, larger drcles represent the two

types of cations A and B.
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Figure 3. The unit cell of the BeSiNy structure
[{5), a wurtzite-derived ordered sructure which is
a hexagonal analogue of chalcopyrite, shown here

for a compound ABC,.

Small circles represent

anions C, larger circles represent cations A and B.
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Figure 4 Calculated total strain-energy for Zn;_,Mn;Se (@) cubic and (b) hexagonal
ordered structures (triangles) and the random alloy (curves). Full triangles indicate the
low strain-energy structures. The random and ordered results are shown in the same
plots for purposes of comparison only; the two calculations are not directly related, The
energy of the random alloy in the zinc-blende and wurtzite structures is identical due
to approximations used in the theory. Results are shown for all x for both cubic and
hexagonal symmetries for continuity. The location of the phase transition at z ~ 0.3 is

indicated.

detected by x-ray diffraction [4). Our strain model results for the ordered structures

can be interpreted in terms of the experimental alloy by speculating that the alloy is
microcrystalline, with random orientation of ordered domains. The domains would
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have to be large enough that boundary effects would be negligible, since our cal-
culation assumes perfect crystals. The results of the total strain-encrgy calculations
appear in figurc 4. The ordered structures group into low-, medium- and high-strain
families [14]. Interestingly, the energies of the low-strain hexagonal structures near
the phase transition {(x = 1, 1) are almost 0.5 meV (per atom) lower than those of
the cubic structure (z = §). This difference is due purely to the change in symmetry
since the force constants used in the two cases are the same. The jump in energy
is particularly pronounced because of the larpe mismatch of angular force constants
between ZnSe and MnSe—for an idealized alloy with equal angular force constants,
the energy difference is much smaller. This simple empirical mode] of strain certainly
cannot explain the phase transition by itself (and we are dealing only with ordered
structures here), but it is tempting to speculate that strain relaxation does play a role.

We expect the low-strain structures to predominate if the system is driven by
strain relaxation. In any case, the trends in local structure are the same for all
strain families. Results for the NN bond lengths and NNN anion-anion distances for
both cubic- and hexagonal-symmetry low-strain structures appear in figures 5(a,b)
and 6(g,b). Both the bond kengths and anion-anion distances are clearly bimodal, but
show a greater change as a function of composition than the experimental results.

The most interesting results are the NNN cation—cation distances, shown in fig-
ures 5(c) and 6(c). Unlike the EXAFS resuits, the calculated cation—cation distances
do not split into three widely separated groups but instead closely follow Vegard’s
faw. This trend s an unavoidable consequence of ordering. If the alloy is to order,
it is necessary for the interaction between adjacent cations 0 be such that atoms of
Zn prefer o be surrounded by atoms of Mn, and Mn by Zn (‘antiferromagnetic’).
The other possible interaction (‘ferromagnetic’y would Jead to clustering of like atoms
and phase separation. Thus in all of the ordered structurcs considered here cations
are isolated from other cations of the same type. In fact, in the structures with
e <4 (or  » 2) all welve neighbours of the lower composition cation are of the
opposite type. This allows the intervening anions to move easily to accommodate the
two natural bond lengths of the alloy, but it also prevents the isolated cation from
moving within the unit cell because there is no preferred direction for relaxation. The
more comon <ation also has no reason for motion relative o its neighbours because
the less common cations are distributed symmetrically due to the long-range order.
Cation positions will relax along with changes in the lattice constants, but distortions
internal w0 the unit cell are largely ruled out. Any alloy that s ordered in the sense
defined here will have mean NNN cation—cation distances that closely follow Vegard’s
law. The conclusion arrived at on the basis of the NNN data must be that the alloy
Zn,__Mn,Se shows no signs of ordering in the bulk

4. Random iterative cluster model

Since ordering has proven inadequate for describing the NNN environment of the
alloy, a random iterative cluster mode} (RICM) has been developed to deal with the
more conceptually difficult problem of simulating random occupation of the cation
sites. The model is an extension of an idea originally proposed by Balzarotti e
al [3], in which they considered the relaxation of anion-centred tetrahedral clusters
with the cation sublattice held fixed. We retain the local-cluster perspective of that
approach but also allow the cation sublattice to relax by including cation-centred
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Figure 5, Calculated local structure results for low
strain-energy cubic ordered stnuctures: (g} Zn-Se
(lower squares) and Mn-Se (upper squares) bond
lengths; (b) Se~Zn-Se (lower squares) and Se~-Mn—
Se (upper squares) anion-anjon distances; and (¢}
Zn-Zn (+), Zn-Mn (open squares) and Mn-Mn
(X) cation—cation distances. Results are shown for
alt values of x for coniinuity. Note not all types of

cation—cation distance are seen at z = 3, 3.
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Figure 6 Calculated local struciure results for
low strain-energy hexagonal ordered structures: (q)
Zn-Se (Jower squares) and Mn-Se (upper squares)
bond lengths; (b) Se-Zn-Se (lower squares) and
Se-Mn-Se (upper squares) anion-anion distances;
and {c} Zn-Zn (+), Zn-Mn (open squares) and
Mn-Mn (X) cation-cation distances. Results are
shown for all values of 2 for continuity.

clusters via an iteration scheme. Adding cation clusters greatly increases the number
of configyrations sampled and allows sites on both sublattices to relax in response to
reighbours in the second as well as first shell. Thus the model is able to describe
the NNN distances that the EXAFS data [4] and ordered model have shown to be

important,

The basic building block of the model s the anion-centred cluster. Each anion is
surrounded by four cations, each of which can be cither Zn or Mn, leading to a total
of 16 (2*) clusters. The more complicated cation-centred clusters are constructed
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from four anion clusters that share the common central cation. The four anions are
identical, all Se, but there are twelve cations in the second neighbour shell, giving
8192 (2!3) total cation configurations. In all clusters, the central atom is relaxed
with NNs held fixed. This approximation makes cubic and hexagonal symmetries
indistinguishable. The strain-energy terms used include the four bonds and six angles
originating on the central atom. The correct counting of energy terms for a znc-
blende or wurtzite structure gives two bonds and six angles per atom, so the radial
terms acquire an extra factor of % 1o avoid double counting of bonds. Angles centred
on the NNs of the central atom are not directly included but dealt with in later steps
of the iteration process when the other sublattice is relaxed.

The relaxation scheme begins with ali atoms on an undistorted lattice with the
lattice constant for a given composition determined by Vegard's law. The iteration is
accomplished by using relaxed positions of central atoms in a given step to determine
the distorted positions of surrounding atoms in the next step. Necessarily, the anion
clusters are relaxed first. The distorted anion clusters are used to build cation clusters
in which tetrahedral symmetry is now broken. The full set of cation configurations
is then relaxed and the iteration returns to the anion clusters with a composition-
weighted binomial averaging over the 8192 cation clusters that reduces the number
of configurations to 16. This averaging procedure allows a given atom at the centre
of a cluster t respond explicitly to three of twelve second neighbours and ‘smooths
out’ the cation relaxation. The averaging also places symmetry restrictions on the
relaxation of the anions. All clusters with the same number of cations of a given
type are rotationally equivalent, so there are only five independent anion clusters,
not 16. (The five clusters are Zn,, Zn;Mn, Zn,Mn,, ZnMn;, and Mn,.) The
iteration converges quickly, with atomic positions stabilized to the level of one part in
108 in approximately 20 steps. Structural information such as NN and NNN distances,
distributions for these, and the strain-energy are extracted from composition-weighted
averages over the final forms of the distorted clusters.

The random iterative cluster model has some systematic propertics that should be
mentioned. The iteration procedure allows atoms to occupy distorted positions around
the perfect erystal sites of the original lattice, but does not allow the underlying lattice
itself to distort. Thus the overall mean NN and NNN distances (not separated according
10 type) are forced to obey Vegard’s law. The model also shares some properties with
a theory of a random elastic network with a length mismatch developed by Thorpe
and Garboczi [16]. Thorpe and Garboczi consider pure radial forces on the two-
dimensional triangelar net and find an interesting result in the NN environment for
the special case of equal force constants, namely the short and long bonds have
lincar mean lengths and identical shapes of distributions as a function of composition
x. Angular forces must be included to stabilize the zinc-blende lattice, so we study
the case Cp = C8, C# = CP. The ricM does produce linear NN distances and
identical distribution shapes in this instance, illustrating the similarities of the theorics.
Histogram plots of the nN distributions for three compositions appear in figure 7.
Additionally, the RICM predicts both linearity and identical distribution shapes to
extend o NNN distances,

Application of the random iterative cluster model to Zn,_,Mn Se reproduces
qualitative wends in both NN and NNN environments. Because of the approximations
of rigid NN relaxation and equal zinc-blende and wurtzite force constants, the model
does not distinguish cubic and hexagonal symmetries. This has little consequence for
trends in local structure, if the ordered structure results are a guide, although it is
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Figure 8. Calculated local structure results from the
random iterative duster model: (2) Zn-Se (lower
curve) and Mn-Se (upper curve) bond lengths;
{P) Se-Zn-Se (lower curve) and Se-Mu-Se (upper
curve) anjon-anion distances; and (¢) Zn-Zn (bro-
ken curve), Zn-Mn (full curve) and Mn-Mn (chain
curve} calion—cation distances. Cubic and hexago-
nal symmetries are not distinct. The predicted vca
distance is not shown.

unfortunate that we cannot calculate distinct total strain energies for the two cases
using the RICM. The strain-energy (identical for zine blende and wurtzite) is plotted as
a function of composition in figure 4. Results for the mean Zn-Se (short) and Mn-Se
(long) bond iengths appear in figure 8(a), along with the calculated Se-Zn-Se and
Se-Mn-Se anion-anion distances in figure 8(b). As with the ordered-structure results,
both sets of distances are similar 1o the experimental data but with more change as
a function of composition . The slight curvature is caused by the mismatch of the
force constants. Interestingly, the predicted mean cation—cation distances, figure 8(c),
mimijc the experimental trend and split into three distinct groups, Mn-Mn (long),
Mn-Zn (intermediate), and Zn-Zn (short). However, the calculated cation—cation
distances approach Vegard’s law much more closely than the experimental results.
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This perhaps indicates that the alloy is random but the model is too kmited to describe
the trends fully. Small cluster size, symmetry imposed restrictions on relaxation, and
the two force-constant approximation could all be important limitations of the model.
Nevertheless, the model has been instructive in clarifying experimental trends.

5. Summary

A simple theory of elastic strain has been applied to the problem of alloy relaxation
due to length mismatch in Zn,__Mn_Se. Contrasting results from two models of
local structure, it is found that a model based on a random cation distribution give
a good qualitative description of both the NN and NNN environments as determined
by experiment, while a model based on long-range ordering fails. In particular,
the random model predicts a trimodal splitting of the NNN cation—cation distances,
a prominent feature of the local structure observed experimentally in this II-VI
system. This success serves to emphasize the importance of both the cation-site
distribution and strain relaxation extending beyond the NN environment in describing
local structure in ternary semiconductor alloys.
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